
Understanding and Designing Ultra Low
Latency Systems
 TRAININGcontents

☛ Description
☛ Intended Audience
☛ Key Skills
☛ Prerequisites
☛ Instructional Method
☛ course contents

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

Understanding and Designing Ultra Low
Latency Systems
 TRAININGcourse contents

☛ CPU Day1
☛ Disks Day2
☛ Memory
☛ Network
☛ Observability Tools Day3
☛ Benchmarking
☛ Low Latency and High Performance
Libraries and Classes Day4
☛ Java Virtual Machine

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Description:

 Traditional models of concurrent programming have been around for some time.

They work well and have matured quite a bit over the last couple of years. However,

every once in a while there low latency and high throughput requirements that

cannot be met by traditional models of concurrency and application design. How

about handling 400-500 million operations/second per core of a system. When

designing such systems one has to throw away the traditional models of application

design and think different. In this seminar we discuss some of the approaches that

can make this possible. This approach is hardware friendly and a re-look at data

from a hardware perspective. It requires logical understanding of how modern

hardware works. It also requires the knowledge of tools that can help track down a

particular stall and possibly the reason behind it. This may provide pointers for a

redesign if required. In the balance then, this training is about an architectures that

are Hardware friendly. It also about very specialized data structures that fully

exploits the underlying architecture of the processor, cache, memory, disk,

filesystem, and network. The design of this training is like a series of understand-

hardware/OS-concept, apply-it-to-design, measure-it-with-tool.

Intended Audience:

Software Architects

JVM Tuners

 Technology Officers

 Senior Software Engineers

Key Skills:

Understand the cache coherency protocol

Architectural understanding of disruptor.

Processor Micro-architecture refresher

Understand and measure the effect of thread affinity

Understand Off heap techniques

Understand and measure the effect of various levels of caches

Understand how ultra low latency designs are done.

Understand and measure the effect of prefetches

Prerequisites:

A very good knowledge of java

Very experienced in software design and architecture.

A working knowledge of C/C++ will be helpful

Knowledge of existing data structures in Java

Instructional Method:

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

■

■

Slides with pictures to represent concepts

Instructor Led

Hand-on Session to gauge the effect of hardware

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

•

•

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

•

•

•

Understanding and Designing Ultra Low

Latency Systems
CPU

Intel® Xeon™,Sandybridge™,Ivybridge™,Haswell™ Processor

Branch mispredictions, Wasted Work, Misprediction Penalties and

UOP Flow

Uncore Memory Subsystem

Performance Analysis

processor Performance Events: Overview

Performance Analysis and the Intel® Core™ i Processor and Intel®

Xeon™

Basic Intel® Core™ i Processor and Intel® Xeon™ Processor

Architecture and

Core Out of Order Pipeline

Core Performance Monitoring Unit (PMU)

Core Memory Subsystem

Uncore Performance Monitoring Unit (PMU)

Core Performance Monitoring Unit (PMU)

CPU Internals
CPU Run Queues

Saturation

Software

Priority Inversion

Terminology

Word Size

Concepts

Instruction Pipeline

CPU Memory Caches

Microcode and Exceptions

Models

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

•

•

•

•

•

•

•

■

■

■

•

•

•

•

•

■

•

•

•

•

•

•

•

•

Clock Rate

Branch Mispredictions

Front End Events

Hardware

User-Time/Kernel-Time

Compiler Optimization

CPU Architecture

Utilization

Instruction Width

Multiprocess, Multithreading

Preemption

CPI, IPC

FE Code Generation Metrics

Architecture

Highly Concurrent Data Structures-Part1

Weakly Consistent Iterators vs Fail Fast Iterators

ConcurrentHashMap
Structure

remove/put/resize lock

Almost immutability

Using volatile to detect interference

Read does not block in common code path

Factoring in CPU specifics into Design
Lock effects

Ordering Effects

Branch Prediction effects

Cache Line effcts

Cache effects

Thread Affinity

Multi-Core effects

Prefetcher effects

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

•

■

•

•

•

•

■

■

•

■

■

■

•

•

•

•

•

■

•

■

•

•

•

•

•

■

•

•

•

Highly Concurrent Data Structures-Part2
CopyOnWriteArray(List/Set)

Queue interfaces
Queue

BlockingQueue

Deque

BlockingDeque

Queue Implementations

ArrayDeque and ArrayBlockingDeque
WorkStealing using Deques

LinkedBlockingQueue

LinkedBlockingDeque

ConcurrentLinkedQueue
GC unlinking

Michael and Scott algorithm

Tails and heads are allowed to lag

Support for interior removals

Relaxed writes

ConcurrentLinkedDeque
Same as ConcurrentLinkedQueue except bidirectional

pointers

LinkedTransferQueue
Internal removes handled differently

Heuristics based spinning/blocking on number of processors

Behavior differs based on method calls

Usual ConcurrentLinkedQueue optimizations

Normal and Dual Queue

Skiplist
Lock free Skiplist

Sequential Skiplist

Lock based Concurrent Skiplist
mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

•

•

•

•

•

•

■

•

•

•

•

•

■

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

■

•

ConcurrentSkipListMap(and Set)
Indexes are allowed to race

Iteration

Problems with AtomicMarkableReference

Probabilistic Data Structure

Marking and nulling

Different Way to mark

Disks
Models

Terminology

Caching Disk

Simple Disk

Controller

Disk Internals
IOPS Are Not Equal

Caching

I/O Size

I/O Wait

Concepts

Storage Type

Disk Types

Utilization

Time Scales

Synchronous versus Asynchronous

Read/Write Ratio

Measuring Time

Non-Data-Transfer Disk Commands

Saturation

Operating System Disk I/O Stack

Random versus Sequential I/O

Factoring in Disk specifics into Design
Scaling

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

■

•

•

•

■

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

■

•

•

•

Micro-Benchmarking

Event Tracing

Latency Analysis

Cache Tuning

Resource Controls

Static Performance Tuning

Memory
Virtual Memory

Concepts

Terminology

Memory Internals
File System Cache Usage

Swapping

Utilization and Saturation

Overcommit

Allocators

Process Address Space

Demand Paging

Paging

9 Word Size

JVM Memory
Ordering fields of DataValueClasses

Write with Direct Reference

Off-Heap Data Structures

Off-Heap Queues

Write with Direct Instance

Off-Heap Maps

Read with Direct Reference

Network
Network Interface

Terminology

Models
mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

Factoring in Network specifics into Design
Replication How it works

Zero copy/Send file

TCP/IP Throttling

Multiple Processes on the same server with Replication

How to setup UDP Replication

TCP / UDP Background

TCP / UDP Replication

Identifier for Replication

Network Internals
Latency

Software

Controller

Encapsulation

Protocols

Buffering

Packet Size

Protocol Stack

Connection Backlog

Networks and Routing

Hardware

Interface Negotiation

Utilization

Observability Tools
DTrace

Perf

Profiling

Observability Sources

Solaris Analyzer

/sys

Ftrace

kstat
mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

■

■

■

•

Tracing

SystemTap

/proc

JMH

Tool Types

Delay Accounting

Microstate Accounting

Counters

Monitoring

Benchmarking
Passive Benchmarking

Sanity Check

Ramping Load

Activities

Replay

Active Benchmarking

Workload Characterization

Micro-Benchmarking

Background

Statistical Analysis

Benchmarking Types

Custom Benchmarks

Methodology

Effective Benchmarking

CPU Profiling

Industry Standards

Simulation

Benchmarking Sins

Low Latency and High Performance Libraries and Classes

OpenHFT Architecture

Compiler
Generating Off heap classes for on heap interfaces

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

■

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

•

•

•

•

•

Java Affinity
Affinity Thread Factory

isolcpus

using perf and likwid to measure L1, L2 and, L3 cache

performance

PosixJNA Affinity

Write Buffer

Lock Inventory

How much does thread Affinity Matters

using likwid to measure prefetchers

Non Forging Affinity Lock

Affinity Strategies

Affinity Support

Cache Architecture

using mpstat to measure and verify

Read Buffers

CPU Layout

Chronicle
Consumer insensitive

How does it collect garbage

Messaging between processes via shared memory

Synchronous text logging

High throughput trading systems

Messaging across systems

Low latency, high frequency trading

Supports recording micro-second timestamps across the

systems

Synchronous binary data logging

Cache friendly

Functionality is simple and low level by design

Very fast embedded persistence for Java.

Replay for production data in test

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

■

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

■

•

•

•

•

Introduction to Chronicle

Chronicle:Modes of use
Lock-less

Supports thread affinity

Shared memory

Text or binary

GC free

Replicated over TCP

Huge Collection
Advanced Off Heap IPC in Java

Low latency, high throughput software

OpenHFT Chronicle, low latency logging, event store and IPC.

(record / log everything)

Micro-second latency.

OpenHFT Collections, cross process embedded persisted data

stores. (only need the latest)

Millions of operations per second.

HugeHashMap

SharedHashMap

How is off heap memory used?
Around 8x faster than System V IPC.

Memory mapped files

Durable on application restart

One copy in memory.

Can be used without serialization / deserialization.

Thread safe operations across processes

Lang
serializable and deserialization of data

writing and reading enumerable types with object pooling

writing and read primitive types in binary and text without any

garbage.

random access to memory in native space (off heap)
mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

■

•

•

•

•

•

■

•

•

•

•

•

•

•

•

■

■

■

■

•

•

•

■

■

provide the low level functionality used by Java Chronicle

writing and reading String without creating an object (if it has

been pooled).

Small messages serialization and deserialization in under a

micro-second.

The Disruptor Architecture
Data structure and work flow with no contention.

Very fast message passing

Overview of the Disruptor

Allows you to go truly parallel

Create your own

Hardware aware data structures in java
Magical ring buffers

Single writer principle

DoubleAdder

DoubleAccumulator

LongAdder

Measuring incremental tangible benefits of hardware aware

structures

ConcurrentAutoTable

LongAccumulator

Java Virtual Machine

Memory Analysis

Core/Heap dumps Analyzer

jdb Utility
Attaching to a Process

Attaching to a Core File on the Same Machine

Attaching to a Core File or a Hung Process from a Different

Machine

JConsole Utility

HPROF - Heap Profiler

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

■

■

•

•

•

•

•

•

•

•

■

■

•

•

•

•

•

•

•

■

•

•

•

■

•

•

•

CPU Usage Sampling Profiles (cpu=samples)

CPU Usage Times Profile (cpu=times)

Heap Dump (heap=dump)

Heap Allocation Profiles (heap=sites)

Java VisualVM

Serviceability Agent(SA)
Cache Dump

Stepping Through heap

Class Browser

Compute reverse pointers

Stepping through NON Heap

Deadlock detection

Value in code cache

Code Viewer

CPU Usage Profilers

Solaris Studio Analyzer (Linux and Solaris)
stepping through assembly with source

er_print utility

stepping through call-stack (native and java)

stepping through byte codes with source

Associating hardware events with java code analyzer

Collecting processor specific hardware events

Collect command

Java Mission Control
Enabling JFR

Selecting JFR Events

Java Flight recorder

Garbage Collection and Memory Architecture
Heap Fragmentation

GC Pros and Cons

Object Size

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

•

■

•

•

•

•

■

■

•

•

•

•

•

■

•

•

•

•

•

•

■

■

•

•

Algorithms

Overview

Performance

GC Tasks

Reachability

Managing OutOfMemoryError

Generational Spaces

Measuring GC Activity

History
Summary

Old Space

Young Space

JVM 1.4, 5, 6

Diagnostics and Analysis

Native Memory Best Practices
Measuring Footprint

NIO Buffers

Minimizing Footprint

Native Memory Tracking

FootPrint

Integrating Signal and Exception Handling
Reducing Signal Usage

Console Handlers

Signal Chaining

Signal Handling on Solaris OS and Linux

Alternative Signals

Signal Handling in the HotSpot Virtual Machine

Reasons for Not Getting a Core File

Diagnosing Leaks in Native Code
Crash in Compiled Code

Tracking Memory Allocation With OS Support

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

•

•

•

•

•

■

•

•

•

■

•

•

•

•

Using libumem to Find Leaks

Tracking Memory Allocation in a JNI Library

Tracking All Memory Allocation and Free Calls

Sample Crashes

Crash in Native Code

Crash in VMThread

Determining Where the Crash Occurred

Crash due to Stack Overflow

Using dbx to Find Leaks

Crash in the HotSpot Compiler Thread

Troubleshooting System Crashes

Diagnosing Leaks in Java Language Code
Obtaining a Heap Histogram on a Running Process

-XX:+HeapDumpOnOutOfMemoryError Command-line

Option

jmap Utility

Using the jhat Utility

JConsole Utility

 Monitoring the Number of Objects Pending Finalization

Obtaining a Heap Histogram at OutOfMemoryError

 HPROF Profiler

NetBeans Profiler

Creating a Heap Dump

Developing Diagnostic Tools
Java Platform Debugger Architecture

java.lang.management Package

Java Virtual Machine Tools Interface

Troubleshooting Hanging or Looping Processes
Diagnosing a Looping Process

Deadlock Detected

No Thread Dump

Deadlock Not Detected
mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

■

■

•

•

•

•

•

•

•

■

•

•

•

■

■

•

•

•

■

■

•

•

•

•

■

•

•

•

•

Diagnosing a Hung Process

Forcing a Crash Dump

Troubleshooting Memory Leaks
Crash Instead of OutOfMemoryError

Meaning of OutOfMemoryError

Detail Message: <reason> <stack trace> (Native method)

Detail Message: Java heap space

Detail Message: request <size> bytes for <reason> Out of swap

space?

Detail Message: PermGen space

Detail Message: Requested array size exceeds VM limit

 Finding a Workaround
Crash During Garbage Collection

Class Data Sharing

Crash in HotSpot Compiler Thread or Compiled Code

Garbage Collection-Advanced Tuning Scenarios

Advance Tuning Scenarios-Part2
JDK 5,6,7 defaults

Default Flags

Garbage Collection Data of Interest

Tuning GC For Throughput and Latency

Latency
Old(Parallel)

Perm

Young (Parallel)

Pset Configuration

Old(CMS)
Tenuring Distribution

Initiating Occupancy

Common Scenarios

Survivor Ratio

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

■

•

•

•

•

•

•

•

■

•

■

•

•

•

•

•

•

■

•

•

■

•

•

•

■

•

•

•

•

■

Tenuring threshold

Througput
(Parallel GC)

CondCardmark

Adaptive Sizing

Tlabs

Large Pages

Numa

Pset Configuration

CMS
Concurrent Mode Failure

Monitoring GC
Par New

Parallel GC

Safe Pointing

Time Stamps

Date Stamps

System.GC

Advance Tuning Scenarios-Part1
Monitoring the GC

Conclusions

GC Tuning
Tuning Parallel GC

Tuning CMS

Tuning the young generation

GC Tuning Methodology
Deployment Model

Choosing Runtime

General GuideLines

Data Model

Heap Sizing

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

■

■

•

•

•

•

•

■

•

•

•

•

•

•

•

■

•

■

•

•

■

•

•

•

•

■

•

•

•

■

Factor Controlling Heap Sizing

Advanced JVM Architecture

Tuning inlining
MaxInlineSize

InlineSmallCode

MaxInline

MaxRecursiveInline

FreqInlineSize

Monitoring JIT
Deoptimizations

Backing Off

PrintCompilation

OSR

Log Compilations

Optimizations

PrintInlining

Intrinsics
Common intrinsics

Understanding and Controlling JVM Options
DoEscapeAnalysis

AggressiveOpts

CallSites
Polymorphic

BiMorphic

MegaMorphic

MonoMorphic

HotSpot
Client

Server

Tiered

Advanced JVM Architecture Part 1

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

•

•

•

•

•

•

•

•

•

•

•

•

•

•

■

•

•

•

•

•

NUMA

Inline caching

Virtual method calls Details

Virtual Machine Design

Dynamic Compilation

Large Pages

Biased Locking

Lock Coarsening

Standard Compiler Optimizations

Speculative Optimizations

Escape Analysis

Scalar Replacements

Inlining Details

VM Philosophy

Advanced JVM Architecture-Part 2
JIT

Mixed mode

Golden Rule

Profiling

Optimizations

mobile:+91.9880951838
mailto:mohit.riverstone@gmail.com
mailto:mohit@stillwaters.ai
website:www.stillwaters.ai
blog:slowbreathing.github.io

website:[website:www.stillwaters.ai]
blog:slowbreathing.github.io

	contents
	course contents
	Description
	Intended Audience
	Key Skills
	Prerequisites
	Instructional Method
	Understanding and Designing Ultra Low Latency Systems
	CPU
	CPU Internals
	Highly Concurrent Data Structures-Part1
	Weakly Consistent Iterators vs Fail Fast Iterators
	ConcurrentHashMap

	Factoring in CPU specifics into Design
	Highly Concurrent Data Structures-Part2
	Queue interfaces
	Queue Implementations
	ArrayDeque and ArrayBlockingDeque
	LinkedBlockingQueue
	LinkedBlockingDeque
	ConcurrentLinkedQueue
	ConcurrentLinkedDeque
	LinkedTransferQueue

	Skiplist
	ConcurrentSkipListMap(and Set)

	Disks
	Disk Internals
	Factoring in Disk specifics into Design

	Memory
	Memory Internals
	JVM Memory

	Network
	Factoring in Network specifics into Design
	Network Internals

	Observability Tools
	Benchmarking
	Low Latency and High Performance Libraries and Classes
	OpenHFT Architecture
	Compiler
	Java Affinity
	Chronicle
	Chronicle:Modes of use

	Huge Collection
	How is off heap memory used?

	Lang

	The Disruptor Architecture
	Hardware aware data structures in java

	Java Virtual Machine
	Memory Analysis
	Core/Heap dumps Analyzer
	jdb Utility
	JConsole Utility
	HPROF - Heap Profiler
	Java VisualVM
	Serviceability Agent(SA)

	CPU Usage Profilers
	Solaris Studio Analyzer (Linux and Solaris)
	Java Mission Control

	Garbage Collection and Memory Architecture
	History

	Diagnostics and Analysis
	Native Memory Best Practices
	Integrating Signal and Exception Handling
	Reasons for Not Getting a Core File
	Diagnosing Leaks in Native Code
	Diagnosing Leaks in Java Language Code
	Developing Diagnostic Tools
	Troubleshooting Hanging or Looping Processes
	Forcing a Crash Dump
	Troubleshooting Memory Leaks
	 Finding a Workaround

	Garbage Collection-Advanced Tuning Scenarios
	Advance Tuning Scenarios-Part2
	Tuning GC For Throughput and Latency
	Latency
	Old(CMS)

	Througput

	CMS
	Monitoring GC

	Advance Tuning Scenarios-Part1
	GC Tuning
	GC Tuning Methodology
	Heap Sizing

	Advanced JVM Architecture
	Tuning inlining
	Monitoring JIT
	Intrinsics

	Understanding and Controlling JVM Options
	CallSites
	HotSpot

	Advanced JVM Architecture Part 1
	Advanced JVM Architecture-Part 2

