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Mapping the compute to hardware resources of the FPGA chip
Designing the Chip and its layout specifically for the load

Hello My Family, Friends, and Colleagues,

We at Stillwaters have some great news to share but, a little reflection first.
The year gone by has put our whole life in perspective. The lockdown came as a shock and just like all of us going through the
pandemic, I too felt the frustration building up. Focussing on work and more importantly, trying to give back in whatever way I
can was the only way I saw to salvage my sanity.

We immediately put together a small team at Stillwaters to arrange for Blood/Platelets/Beds/Medicine/ICU for people in need.
Initially, it was a losing battle, but slowly we started turning it around. I must thank everyone who we worked with for this to be
possible. I am personally deeply indebted to all at Stillwaters and LIONs club.We would love to join hands with all of you in the
future to make our efforts more effective.

Back to the great news. Our tech team did what it does best. We have cracked a very difficult technical problem for our clients.
To put it simply, it reduces the latency of speech-based transformers. Also, The way we have done it is quite novel.

There are 2 parts to it

AI

VEENA MOHIT
CEO & Founder | STILLWATERS AI

Warm Regards,
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For non-techies, the closest analogy I can think of is, 
imagine having a vehicle designed to wrap around(shrink wrap) for the
load(passengers, luggage, travel time, etc.) it carries to save gas and other
resources.
Did I mention this is our greatest work so far?



AI
We present the use of Artificial Intelligence to design FPGA chips for Ultra-Low-
Latency based speech transformers. 
Our brief was to reduce latency from TTS(Text-to-Speech) and STT(Speech-To-Text)
systems. This started as an experiment to lower latency for a seq-to-seq LSTM based
speech synthesis system. 

Post a thorough analysis, we broke it down into:
1. Mapping the matrix multiplication of deep learning transformers into an FPGA
chip(Transformers On Chip(part-1))

2. Co-designing the FPGA chip for the appropriate workload(ChipDesign(part-2)). 

In part-1 (Transformers On Chip(part-1)) we look specifically at resources available on
an FPGA chip and a few different strategies of hardware mapping of the
workload(matrix multiplication) on the above chip.

http://localhost:4000/articles/2021-07/Transformers-On-Chip
http://localhost:4000/articles/2021-07/ChipDesign
http://localhost:4000/articles/2021-07/Transformers-On-Chip


We have taken a traditional (TTS)Text-to-speech and (STT)Speech-to-
text system and spun it on a microchip. 

 
In the pipeline of a traditional TTS system there is a Seq-to-Seq LSTM

layer rearing its “ugly latency head”. It takes approximately 
tens of thousands iterations of this network to generate a second of

audio. Sometimes this latency is not acceptable. 
 

LSTMs have played their part in the Deep Learning history and it is time
for them to pass on the baton to the new King, The Transformers.  
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Firstly, we took the STT based on Conformer (a transformer variant) and rewrote it using
Trax.  

Why Trax? Well it has an optimizing Just-In-Time compiler for Machine learning. We
have extended that for FPGA. But more on that later.

It was a huge improvement on the LSTM variant. While there was a marked
improvement, it wasn’t enough. And this was running on a 2020 GPU.

Transformers are essentially (MHSA)Multi-headed-Self-Attention and a (FFM)feed
forward Module. Both these are matrix multiplications of grand and varying scale. The
Conformer has an additional CM(Convolutional Module) which is a matrix filter
operation.

STT (Speech-to-Text)
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https://arxiv.org/abs/2005.08100
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://github.com/google/trax
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The “varying” part is proving extremely tricky for GPUs. Both MHSA and FFM have varying parallelism requirements(from one
model to another).

Also, the standard precision leads to lots of wastage energy. GPU’s SIMD/SIMT lock-step style execution model makes matters
worse. Lock step style execution is prohibitive in terms of energy wastage.  

Last but not least, the extra control structure on the GPU is not useful(wasteful) for matrix multiplication.

GPU is a general purpose device and for something as specific as tuning a massive matrix multiplication it is found wanting. It is
not a natural fit would be the right phrase.

All of the above contribute to tons of electricity, produce a lot of heat, and use fans for cooling. 
And a large number of environments where we apply deep learning like speech devices, self-driving cars, production lines etc,
are not agreeable to it. 
This also makes maintenance and life expectancy of a GPU an issue.

Secondly, we took the TTS based on the transformer and did exactly the same. 
Again it was a decent improvement on the LSTM version. But, not enough. Again, this was running on a 2020 GPU.

GPUs are great at handling the “grand” part despite some transformers having billions to even trillions of parameters. 

TTS (Text-to-Speech)
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https://arxiv.org/pdf/1809.08895v3.pdf
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Field-programmable gate arrays (FPGAs) are reconfigurable computer chips that can be programmed
to implement any digital hardware circuit.
FPGAs consist of an array of different types of programmable blocks (logic, IO, and others) that can be
flexibly interconnected using prefabricated rout-ing tracks with programmable switches between
them.
The bit-level reconfigurability of FPGAs enables implementation of the exact hardware needed for each
application (e.g. datapath bit-width, pipeline stages, number of parallel compute units, memory
subsystem, etc.) instead of the fixed one-size-fits-all architecture of CPUs or GPUs. 

Consequently, they can achieve higher efficiency than CPUs or GPUs by im-plementing instruction-
free streaming hardware 

The CPUs and especially GPUs are nearing their transistor limit. 
The world is moving toward specialized hardware to meet the exponentially growing demand for
computers:.

FPGAs as modern, digital Shape-Shifters
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An FPGA BRAM consists of an SRAM-
based memory core, with additional
peripheral circuitry to make them
more configurable for multiple
purposes and to connect them to
the programmable routing

FPGA vendors can add circuitry that
allows designers to repurpose the
LUTs that form the logic fabric into
additional RAM blocks.

FPGAs as modern, digital Shape-Shifters

www.stillwaters.ai

With the prevalence of multipliers in
FPGA designs from key application
domains, and their lower
area/delay/power efficiency when
implemented in soft logic, they
quickly became a candidate for
hardening as dedicated circuits in
FPGA architectures.

FPGA RAM DSP Blocks
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The idea here is to hardware accelerate the huge matrix multiplication which is the core of Transformers. Given the
size of the matrices in transformers ( a few billion parameters in 2020), there is practically no chance of them fitting
inside a top end FPGA board, not for at least the next decade.

So the trick is to chop these huge matrices being multiplied into smaller tiles and reuse these tiles as much as possible
before moving on to the next tile. One of the oldest tricks in a new Avatar.

Optimizing on Hardware Accelerator 

www.stillwaters.ai

Play to FPGAs strength, no extra control logic
Minimize access to OFF-chip RAM by having multi level on chip buffer made of BRAM and LUTRAM
Maximize the compute parallelism (PE)ProcessingElements
And the most vital, balance the above 2.

PEs must be well fed and not starving
Balance cached data with streaming( weights(Mul1) may be cached more and the input will be streamed
more (Mul2)) 

There are 4 key points of FPGA Hardware Optimization:
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https://lwn.net/Articles/255364/
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The hardware mapping is the most fabulous part carried out by our mapper. It
takes the code below and unrolls the MaxMul loop into the Hardware. 
There are 2 Styles

MAC Style(Multiply Accumulator)
For a 4X4 matrix a 2X2 PE array as shown will take 24 cycles give or take.
For a 4X4 matrix a 4X4 PE array as shown will take 6 cycles give or take.

SA Style (Systolic Array)
For a 4X4 matrix a 2X2 PE array as shown will take 24 cycles give or take.
For a 4X4 matrix a 4X4 PE array as shown will take 6 cycles give or take.

We retrofit this mapper to trax.

Optimizing on Hardware Accelerator (MAC Style)
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Same as above except the microarchitecture uses systolic array design
with The PEs being pipelined. 

Follow the color coding especially the data movement(light and dark
blue boxes and arrows) into the PEs and data forwarding among
PEs(Processing Elements). 

The NOC(Network On Chip) architecture which is not shown, is slightly
different for both the MAC Style(Multiply Accumulator) and the SA
Style (Systolic Array). 

Optimizing on Hardware Accelerator (Systolic Array Style)
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The SGB(size of Global Buffer) based on available BRAM and LUTRAM. 
More LUTRAM would mean bigger buffers, better reuse, but fewer PEs and lesser parallelism.

The LGB(Layout(Locality) of GLobal Buffer) 
The size of the MT (Matrix Tile) and PET(PE Tile)
The size of RF(RegisterFile)

As a general rule, bigger/multi-level caching(SGB/NOC/RF are like L3/L2/L1) would better lookup performance but increase
data replication and eat into logic space(PEs) 

The layout of NOC(Network on Chip)   
With 100s of MBs to 1000 GBs of matrix sizes to choose from in modern transformers, myriad different Accelerator boards,
Shape shifting configuration options on these boards, all the above variables to choose from, the configuration space is a
serious problem of plenty.

The SA Style (Systolic Array) works better for bigger tiles when it’s pipelines are fully fed for longer duration. But not too big as the
NOC feeding the buffers has its own limitations. The size of the tile and indeed the style of the microarchitecture( MAC or SA) are
one of the many design variables that need to be configured for best results. These in turn depend on quite a few more design
variables, some of them are due to software constraints (Matrix size etc.) and others are hardware constraints (BRAM etc). Here
are a few important design variables

A general configuration done by a domain expert(on Transformers and FPGA board) will give us decent improvement over a
software only implementation but, nowhere near what the hardware is capable of unless the configurations are done by either
Ramanujam or Tesla(Only these 2, others were normal).  

Variables in the design
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https://en.wikipedia.org/wiki/Srinivasa_Ramanujan
https://en.wikipedia.org/wiki/Nikola_Tesla
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In part-2(ChipDesign(part-2)) we treat the resources on FPGA chips,
Workload, and other design parameters as design variables. Finally,
we feed the design variables into the Deep Reinforcement Learning
agent to learn. 
Post learning the expectation from Deep Reinforcement Learning
agent being the optimal placement of blocks to maximize certain
goals like latency, etc. The Deep Reinforcement Learning Algorithm
is supposed to figure out a balance that speeds up computation for
tolerable accuracy losses(if at all). To use a boxing term, pound for
pound, the same hardware micro-designed by a Deep
Reinforcement Learning Agent for carrying a specific load.

http://localhost:4000/articles/2021-07/ChipDesign


Matrix Sparsity(MS) is known to cost a lot. Checks can be built into the PE to reduce the overall
cache requirement, but it comes at the cost of chip fabric space and end-to-end latency. It's a classic
trade off.
Reducing Bit Width(BW) costs accuracy

Recent developments point toward next-generation Deep Learning algorithms that exploit
extremely compact data types (e.g., 1bit, 2bit, 4bit, 8bit, 12bit etc.).  

This is FPGAs’ backyard, but was never done dynamically and as a whole with software in the loop.

Although current FPGA accelerators have demonstrated better performance over generic processors
for specific workloads, the accelerator design space has not been well exploited. One critical problem is
that the computation throughput may not well match the memory bandwidth provided by FPGA
platforms.
But the bigger issue is Hardware design or even certain elements in it are usually not a variable in
application design. Hardware design is a bubble, and so is software design and these don't meet. There
is a case to be made for hardware and software co-design. But a few more hardware specific design
variables first.

Chip Design: Layout, Locality and Resource Allocation
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With so many design variables identified above, this
essentially is a deep search problem. Many of these
design variables can assume millions to billions of values
and the combinatorial space is practically impossible to
go through with an exhaustive search policy. Last but not
least, the entire argument for Artificial Intelligence is
generalization, which is the whole point of the Design
Variables.

Optimizing on Hardware Accelerator (Systolic Array Style)
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Express the constraints and composition of the microarchitecture as a GAT(Graph Attention Network) 
Such complex arrangements that take locality, composition, arrangement and other constraints into account are easier to express
using GATs. Our current implementation is custom but for the next iteration we’d like to use the graph neural network.

Express the Resources and Constraints of the FPGA Chip as the "Rules of Game(Alphago Zero learnt the game of go from scratch, with
the rules of GO as boundary constraints)"

As an example the dark blue (DSP) and the bottle green (BRAM) are pre-arranged in columns right beside each other on the FPGA
chip to aid lower latency and easier integration.
The logic fabric(FPGA fabric) can be used in compute or as RAM(LUTRAM). Both Altera/Intel and Xilinx have elected to make only half
of their logic blocks LUT-RAM capable in their recent architectures. This is another “rule of the game”. Similar to chinese chess, where
a piece is captured and reprogrammed rather than removed from the board. A little like saying if you are not logic you are ram. And
the Deep Reinforcement Learning Agent is expected to learn it over multiple training iterations.
As a general rule, the design variables identified earlier and the Resources and Constraints of the FPGA Chip are expressed as the
"Rules of Game".

We generate combined embeddings that are fed into the Deep Reinforcement Learning Agent for Training.
The Deep Reinforcement Agent with multiple training iterations learns not just the placement of the tiles but also the relative sizing of
caches and indeed the values of the design variables.  

It goes without saying that the prediction for most design variables more than satisfies the primary goal(latency) and shatters the
secondary goal(energy).
But the result is fascinating for a completely different reason. This is the beginning of a recipe for the future of chip design.

Essentially these are the boundary conditions asserted by the design and/or inherent in the chip. Add to that the design variables and we
have the complete rules of the game.

1.
a.

2.

a.

b.

c.

3.
4.

a.

b.

Rules of the Game
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https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://github.com/google-research/google-research/tree/master/graph_embedding
https://deepmind.com/blog/article/alphago-zero-starting-scratch
https://en.wikipedia.org/wiki/Xiangqi


What started as an experiment led to something as fascinating
as this was something beyond expectation at the beginning.
Now that it has, it can be extended to all kinds of FPGA chips
and beyond. The goals may change but the general recipe will
remain essentially the same.

Conclusion
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     +91 93729 55219

Marketing Head
     relations@stillwaters.ai 

We can help you build Artificial Intelligence based systems.

www.stillwaters.ai

We can build it for you

We can help you build it with your team

We can train your organization in
technologies like HPC, Deep Learning, NLP

Abhishek Edachali

For any enquiries or to 
book a free seminar on any of our
modules, please get in touch:


